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Using UE-to-Network Relays
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Motivations

Device to device (D2D) communication is
 JALA; 9D O@=46f-; BRN=D10 ?F A=
from any cellular towers

* In situations where some users are still within

network coverage, D2D User Equipment (UH) -
Network relays can be leveraged to extend and
maintain connectivity to users near the cell

coverage area




Partial Coverage Scenario

MAYDAY! Relayed traffic



UE-to-Network Relay Functions

RelayCommunication

‘ The Relay UE performsl&vel forwarding of
packets between the network and the Remote

How long will the process take?
What is the impact on the user experience?
What are the major factors impacting performance?



Relay Discovery and Selection

Which discovery method to use?
How many relays can be discovered?
Which relay to select?




Relay Discovery Protocol Operation

ADiscovery message transmission
APeriodical (from 0.32 s up to 10.24 s)
AUse transmission probability
ASelect resource randomly
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Relay Discovery Protocol Challenges

APerformance constraints / potential problems

A Collisions
AHalf-duplex
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Relay Discovery Modes

Model A : Relay Announcement
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Model B : Relay Solicitation (Remote UE) - Relay Response (Relay UE)
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Relay Selection Process

ASearch for candidate relay UEs every discovery period
AMeasurement of the candidate relays every 4 discovery periods
AEvaluation of the candidate relays within 16 discovery periods
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User Density Impacts Discovery Time

Number of discovery periods needed for All Remote UEs to discover all Relay UEs

350

w
(]
o

250
200
150
100 |-

— txProb 100
txProb 75
txProb 50

—1 txProb 25

%]
o

T T T T TAIT T

Number of discovery periods

Number of discovery periods
N

A Only the number of Relay UEs A Both the number of Relay UEs
affects the discovery time. and number of Remote UEs

affect the discovery time
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Impact of Discovery on the Relay Selection NisT

Average Number of discovered Relays UEs in a measurement period (4 discovery periods)
with 10 Remote UEs present
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Number of Relay UEs that
the Remote UEs are able
to detect is bounded
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Discovery Model Affects Power Usage

Relative number of transmitted discovery messages
by the Relay UEs
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Selection Algorithm

ARelay discovery affects the choices
available to the Remote UEs

Remote UE
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Remote UE
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AEnhancing information available
during the discovery allows to better -

Remote UE

selection
A Load
ABattery level Vil 10 dBms,

A Achievable data rate URY, U 2U
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Relay Connection Establishment

Is the Remote UE always successful
at connecting to a Relay UE?
How long does the connection
process take?
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A Direct Communication Link Setup requires
signalling between the Remote UE and the

Relay UE

AIf messages are lost, recovery mechanisms
are available based on the following

Pa rameters:
A Duration of Direct Communication Request
retransmission timer (T4100)

A Maximum number of Direct Communication
Request retransmissions upon expiration of

T4100
E How to configure those parameters?

Link Setup Delay

\
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Impact of T4100 and Retransmissions
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AThe configuration of timer T4100 depends on the number of Remote UEs the

Relay UE is communicating with in the Sidelink
ARetransmissions increase reliability but also latency

~

E Deployment must be considered when configuring protocols
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Impact of Uplink Occupancy

4 Remote UEs and T4100 = 16 SL periods
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AFrequent uplink transmissions lower the sidelink connection reliability

Alncreasing the number of retransmission can mitigate the loss but cause significant
delays

E Coordination between uplink and sidelink resource allocation is needed
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Relay Communication

What are the effects on application
performance?

Will the user experience be
affected?
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Mission Critical Push-to-Talk (MCPTT)

Performance Requirements

A3GPP defines performance requirements for on network (TS 22.179)
AMCPTT Access time (KPI 1) less than 300 ms for 95 % of all MCPTT Request.

AEnd-to-end MCPTT Access time (KPI 2) less than 1000 ms

A For users under coverage of the same network when the MCPTT Group call has not been
established prior to the initiation of the MCPTT Request.

AMouth-to-ear latency (KPI 3) that is less than 300 ms for 95 % of all voice
bursts.

A Assumes negligible backhaul delay, max 70 % load, no transcoding

E Can the same requirements be met when connected to a UE-to-
Network relay?
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Relay Communication Paths

. . . . —ﬁ
Scenarios with group communication . i
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While relay UEs are in coverage, delays to/from a relay UE might differ from that of a non-relay UE
2performance will change whether the transmitter and receiver remote UEs are connected to

the same relay or not 20



Impact of Sidelink on Mouth-to-Ear Latency NIST
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A Performance shown are for a network where only the media traffic is carried (no other load on
the network)

A When a Remote UE is involved, the higher the sidelink period, the larger the latency

E Sidelink period configuration must be configured considering end-to-end packet delay

requirements
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Impact of Sidelink on Packet Loss
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A Loss for Relay UE to Remote UE traffic under the threshold

A Excessive packet loss is observed when the transmitter is a Remote UE

E Sidelink period duration does not have a significant effect on the packet loss

E Coordination between uplink and sidelink resource allocation is needed .



Impact of Sidelink on Packet Jitter
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A Jitter is higher for Remote UE to Remote UE communication since sidelink is used twice

E Sidelink period duration has a direct impact on the packet jitter



Lessons Learned

AUE-to-Network relays can help maintain connectivity for UEs losing
coverage while in proximity of other UEs that are still in coverage

APreliminary results show that performance are sensitive to several factors
including:
A Number of devices that can act as Relay UEs
A Number of devices communicating with the Relay UEs
A Sidelink configuration
A Traffic load

AUsers may notice some service degradation under certain conditions
compared to on-network

AOur work will provide guidelines to configure the resources allocated to
D2D and the protocol configurations to ensure proper operations
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Areas for Future Investigation

ARelay activation
A Algorithms to detect when/where a relay might be needed

Alnterference mitigation
AReduce collisions between uplink and sidelink

Almpact on energy consumption
AQuantify additional energy cost to the relay nodes

AProtocol configuration

AGuidelines for configuring timers and maximum number of retransmissions
(i.e., keep alive, failure recovery)
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